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Backgrounds

FP8 Quantization in Linear Layer

FPS * FP8 quantization (conversion) requires scaling
» Calculate absolute max (amax) for scaling

* For quantization,
we need a reduction for amax and scaling

e For small-dimensional MatMul,
the overhead exceeds the speed up




Motivational Study

Quantization Overhead of LORA Layers
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FP8 Quantization Overhead of LORA Layers
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Motivational Study

FP8 Quantization Overhead of LORA Layers

Problem: Current FP8 framework suffer from quantization overhead on LoRA
Research Goal: Design a low-overhead FP8 framework for LoRA
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Proposed Method

1) Melded LoRA: Merging backbone and LoRA for Forward
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Proposed Method

1) Melded LoRA: Merging backbone and LoRA for Forward
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Proposed Method

2) Efficient Gradient Computation for Melded LoRA

For backward:
(1) We freeze the A matrix
(2) Compute gradient of B matrix
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Proposed Method

2) Efficient Gradient Computation for Melded LoRA

For backward:

(1) We freeze the A matrix ‘I . IEI_>

(2) Compute gradient of B matrix
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Proposed Method

3) Row-wise Update of Quantized Weights
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Proposed Method

3) Row-wise Update of Quantized Weights

2. Backward

A Buffer: store updates of B H ot N P
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* Top-K Row-wise Update H'I' - "

 Small updates cannot exceed
quantization-grid

* Apply large update rows only _
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Evaluation
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Conclusion

* We show that existing FP8 quantization methods incur substantial overhead
with small-dimensional LoRA adapters.

 We propose FALQON, which merges the LoRA adapter in the quantized
backbone and significantly reduces quantization overhead.

 FALQON achieves up to three times speedup over existing quantized LoRA
methods.



