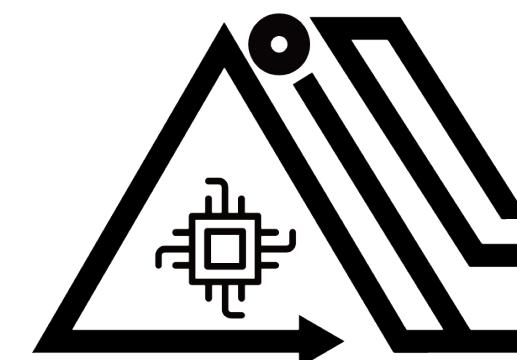


FALQON: Accelerating LoRA Fine-tuning with Low-Bit Floating-Point Arithmetic

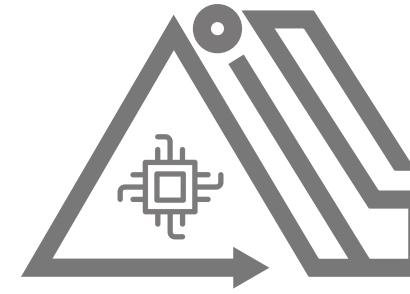
Kanghyun Choi, Hyeyoon Lee, SunJong Park, Dain Kwon, Jinho Lee

Department of Electrical and Computer Engineering
Seoul National University

NeurIPS 2025

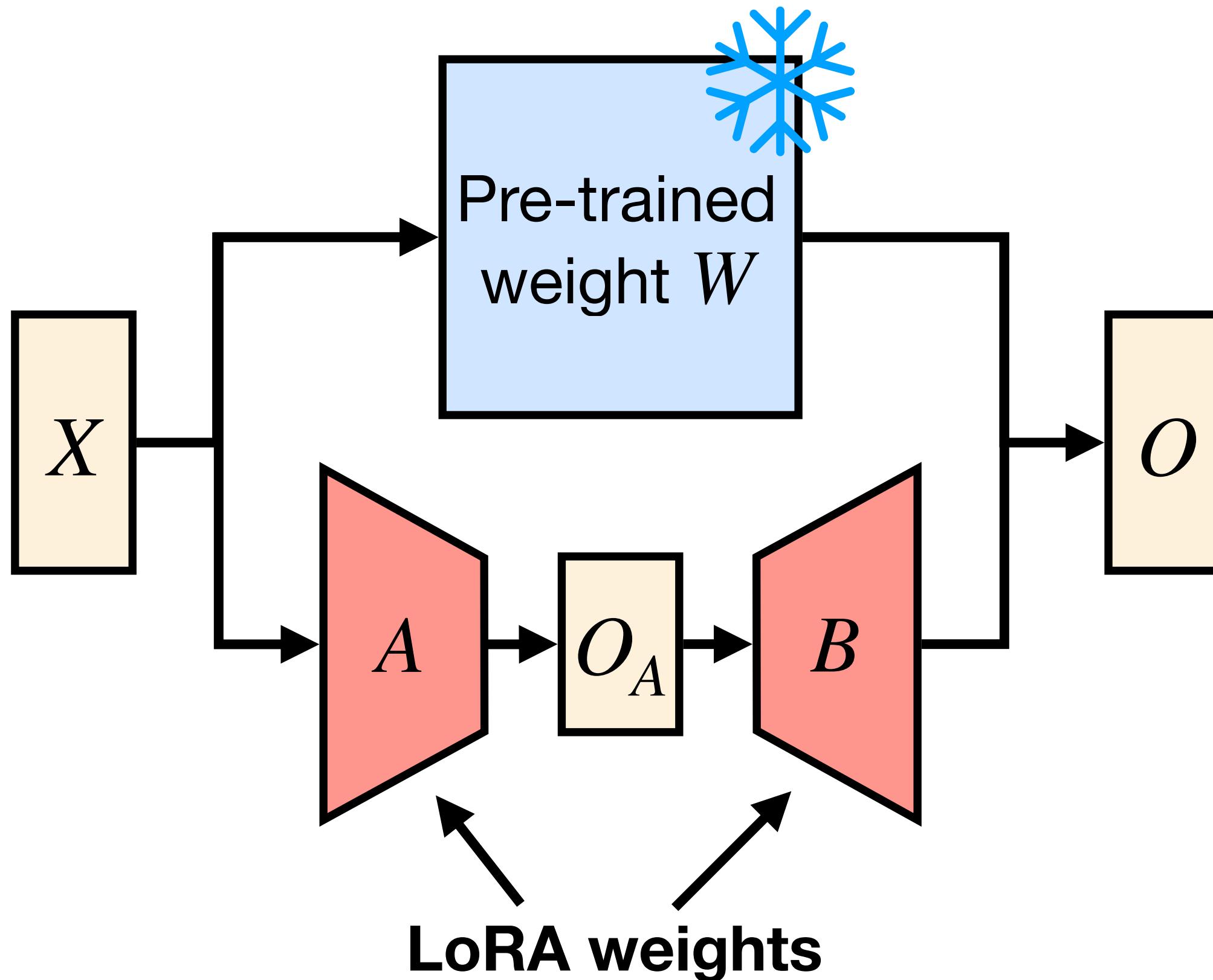


Accelerated
Intelligent
Systems Lab.



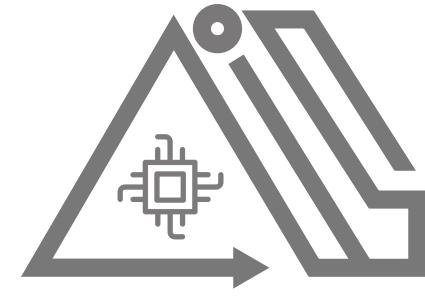
Backgrounds

Low-Rank Adaptation (LoRA)



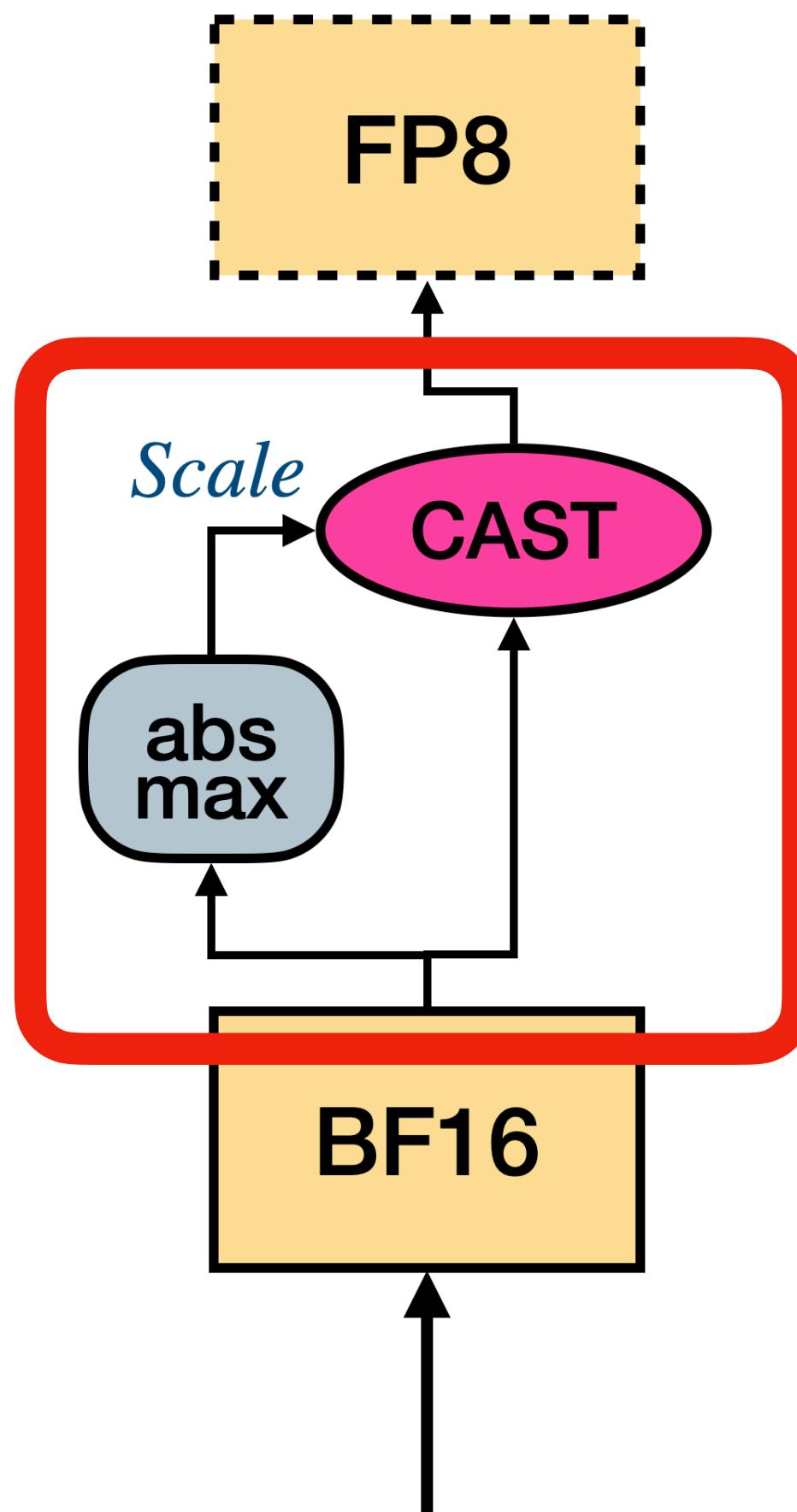
- Low-rank adaptation (LoRA)
 - Freeze pre-trained weights
 - Train LoRA weights only
 - Reduce memory consumption of gradient and optimizer state

$$W_{FT} = \underbrace{W_{orig} + \Delta W}_{\text{weight update}} \approx \underbrace{W_{orig} + BA}_{\text{low-rank projection (LoRA)}}$$



Backgrounds

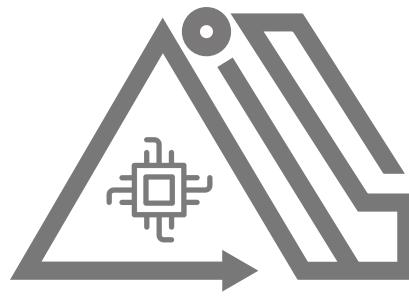
FP8 Quantization in Linear Layer



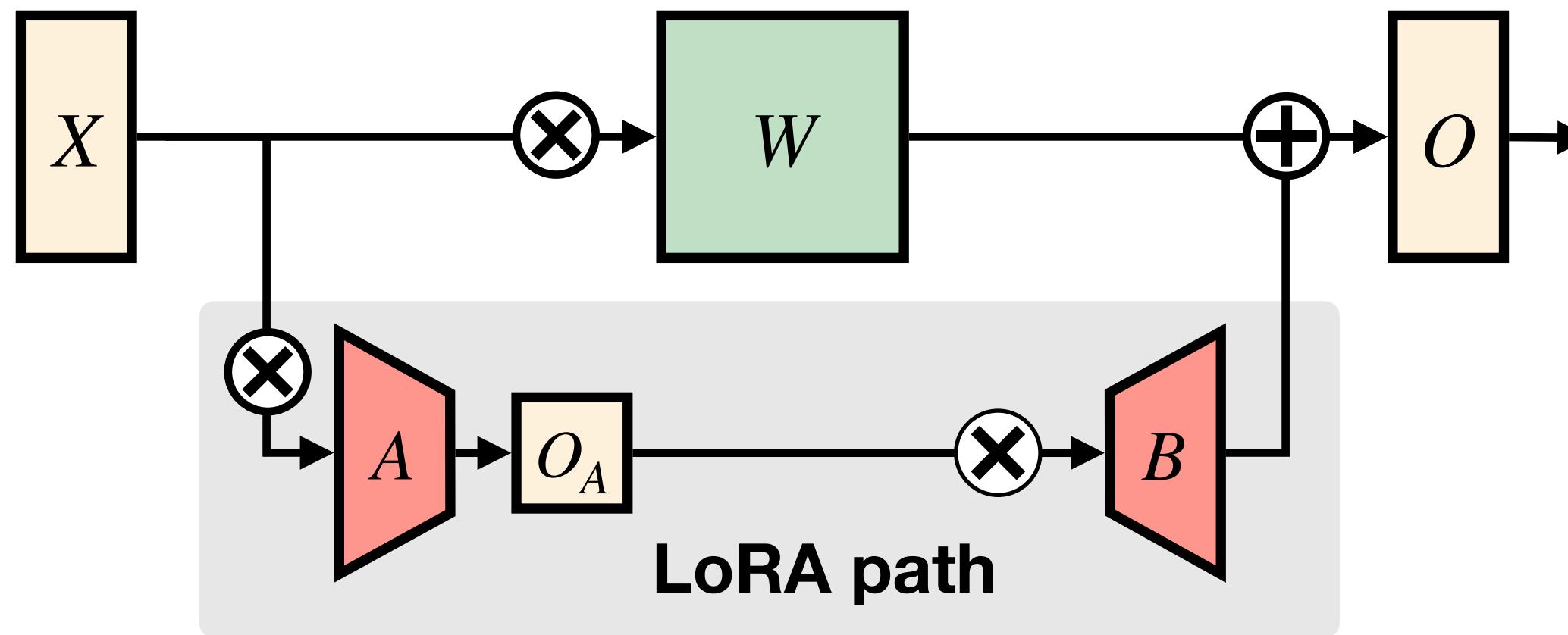
- FP8 quantization (conversion) requires scaling
 - Calculate absolute max (amax) for scaling
 - For quantization, we need a **reduction** for amax and **scaling**
- For small-dimensional MatMul, **the overhead exceeds the speed up**

Motivational Study

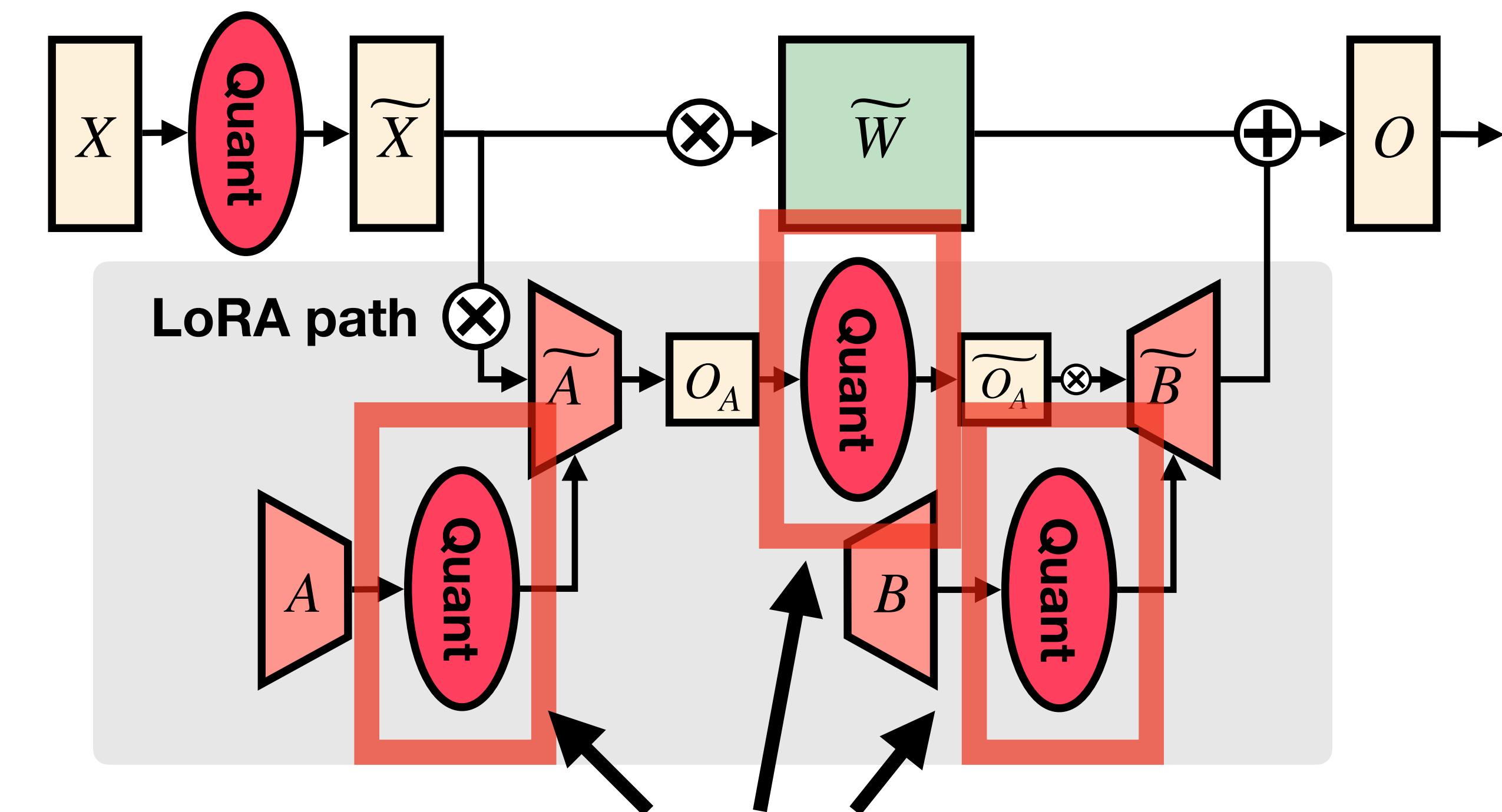
Quantization Overhead of LoRA Layers

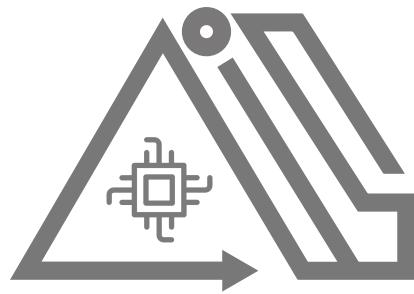


FP16 (No Quantization)



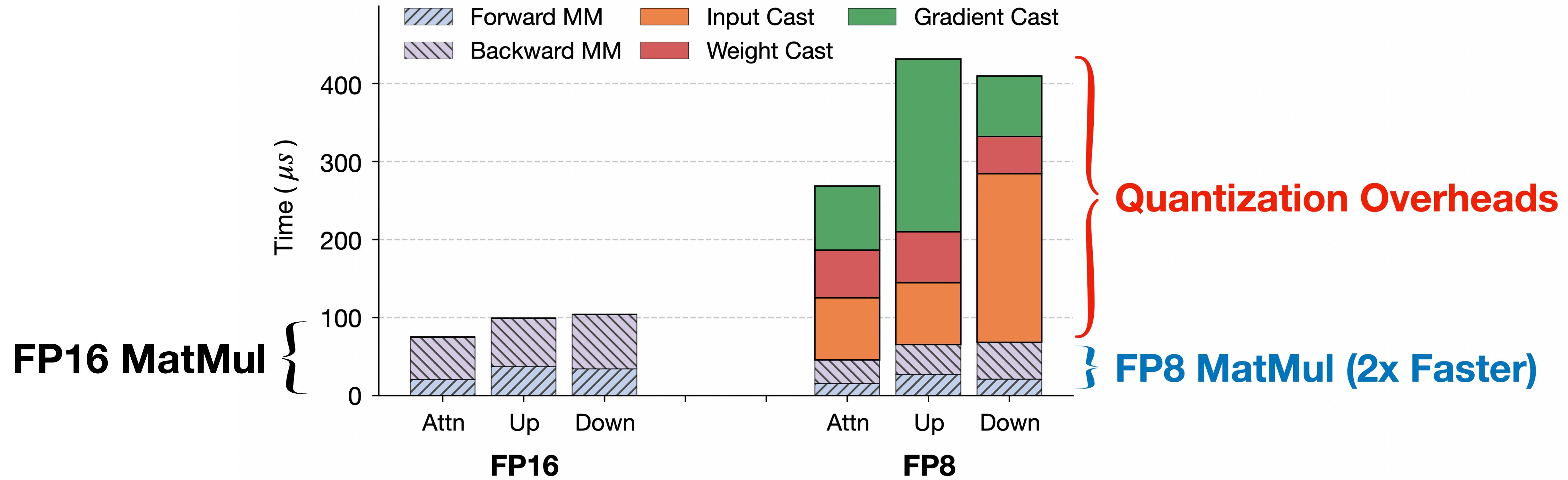
FP8 (Quantization)

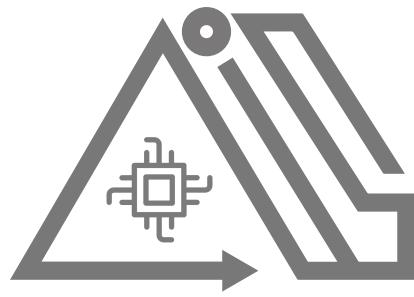




Motivational Study

FP8 Quantization Overhead of LoRA Layers



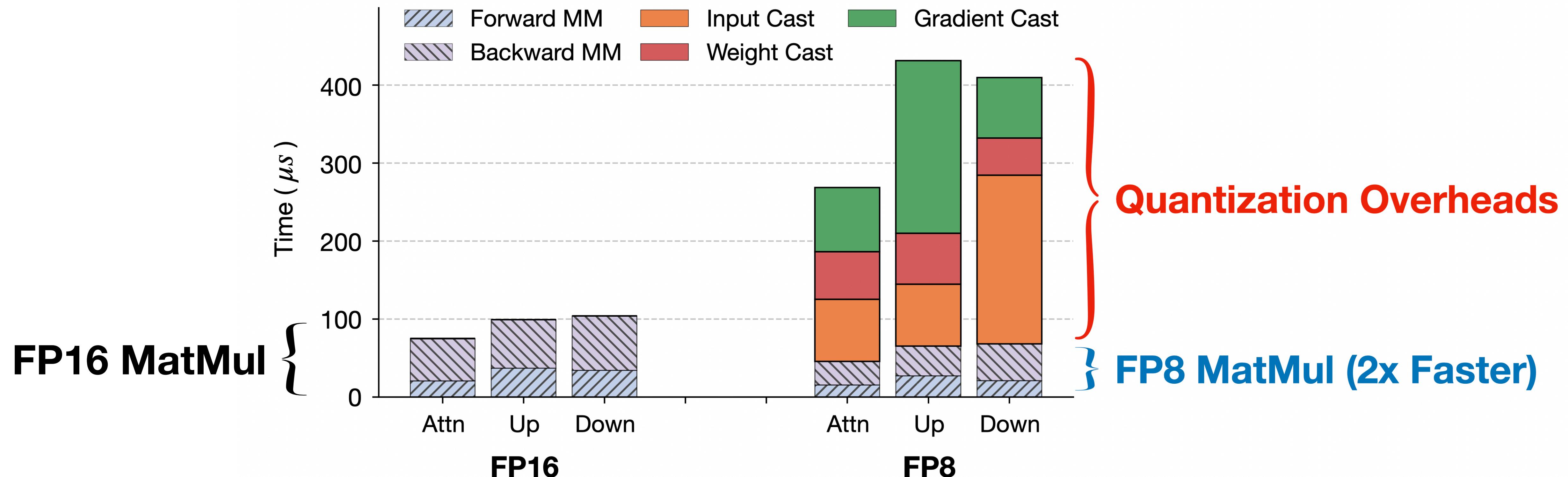


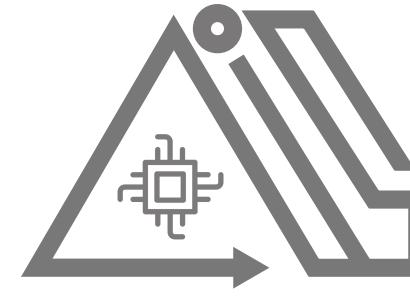
Motivational Study

FP8 Quantization Overhead of LoRA Layers

Problem: Current FP8 framework suffer from quantization overhead on LoRA

Research Goal: Design a low-overhead FP8 framework for LoRA





Proposed Method

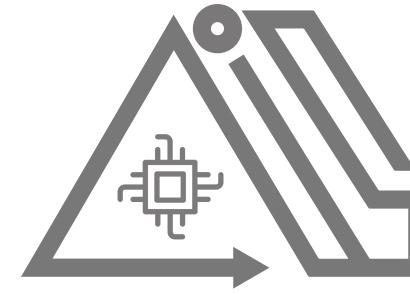
1) Melded LoRA: Merging backbone and LoRA for **Forward**

Quantization Error

$$\tilde{W} = \text{Quantize}(W)$$

$$\tilde{W} = W_{orig} + \underline{\Delta W_Q}$$

Quantization
Error



Proposed Method

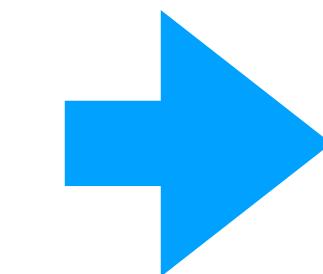
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error

$$\tilde{W} = \text{Quantize}(W)$$

$$\tilde{W} = W_{orig} + \Delta W_Q$$

Quantization
Error



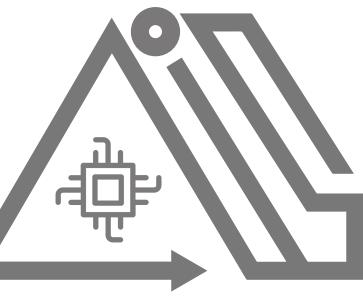
$$W_{orig} + \widehat{B} \widehat{A}$$

where, $\widehat{B} \widehat{A} \approx \Delta W_Q$

Quantization Error
as LoRA

Proposed Method

1) Melded LoRA: Merging backbone and LoRA for Forward



Quantization Error

$$\tilde{W} = \text{Quantize}(W)$$

$$\tilde{W} = W_{orig} + \Delta W_Q$$

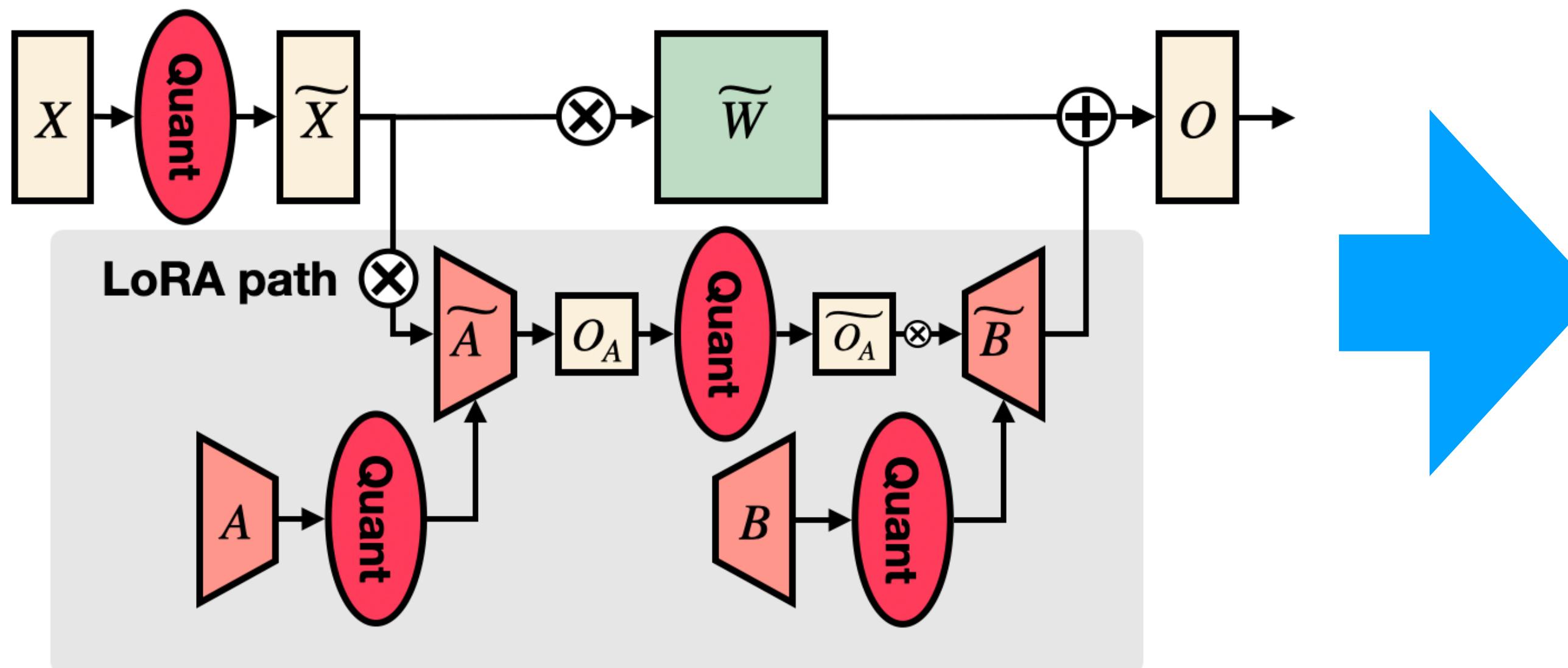
Quantization
Error

$$W_{orig} + \hat{B} \hat{A}$$

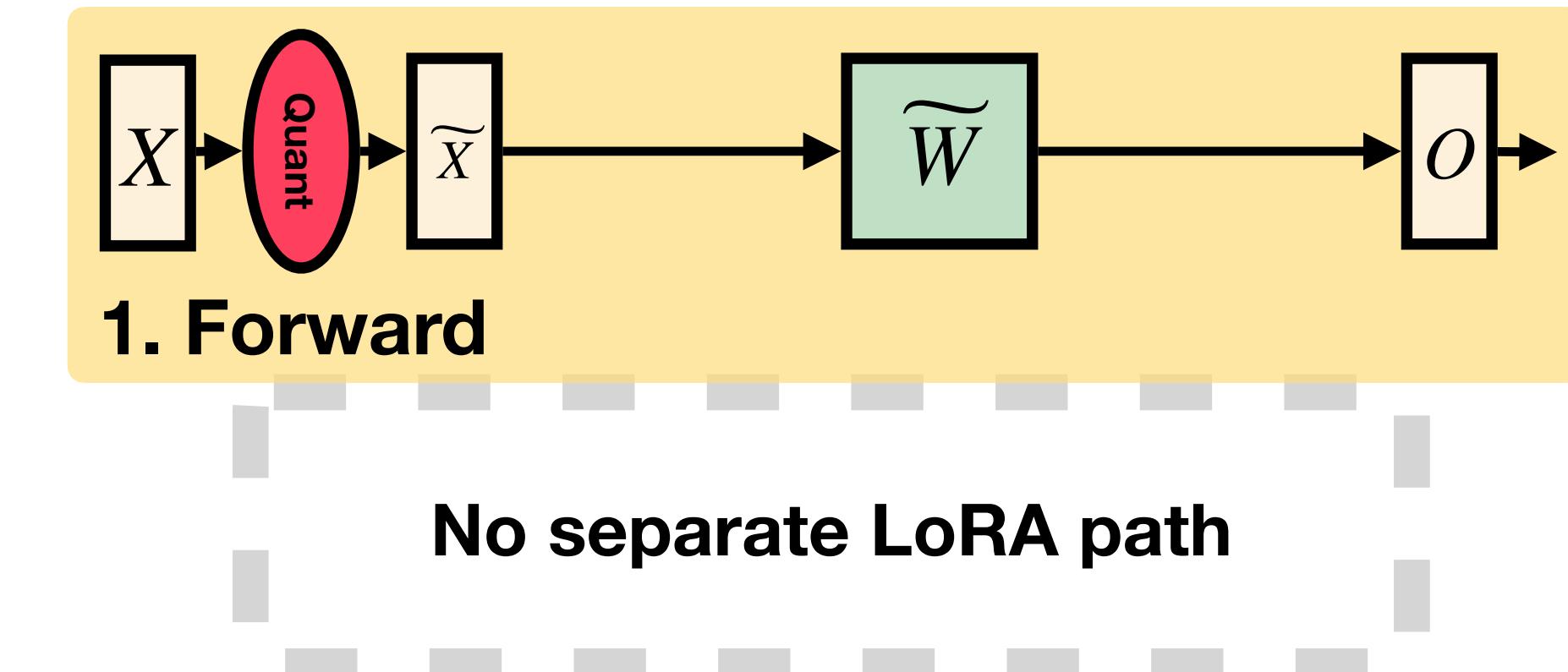
where, $\hat{B} \hat{A} \approx \Delta W_Q$

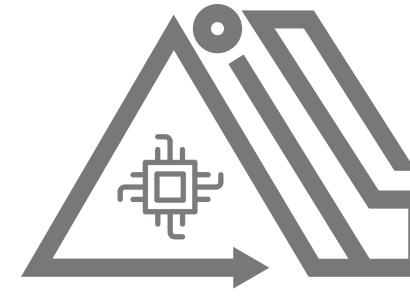
Quantization Error
as LoRA

FP8 (Baseline)



FP8 (Ours)
Melded LoRA





Proposed Method

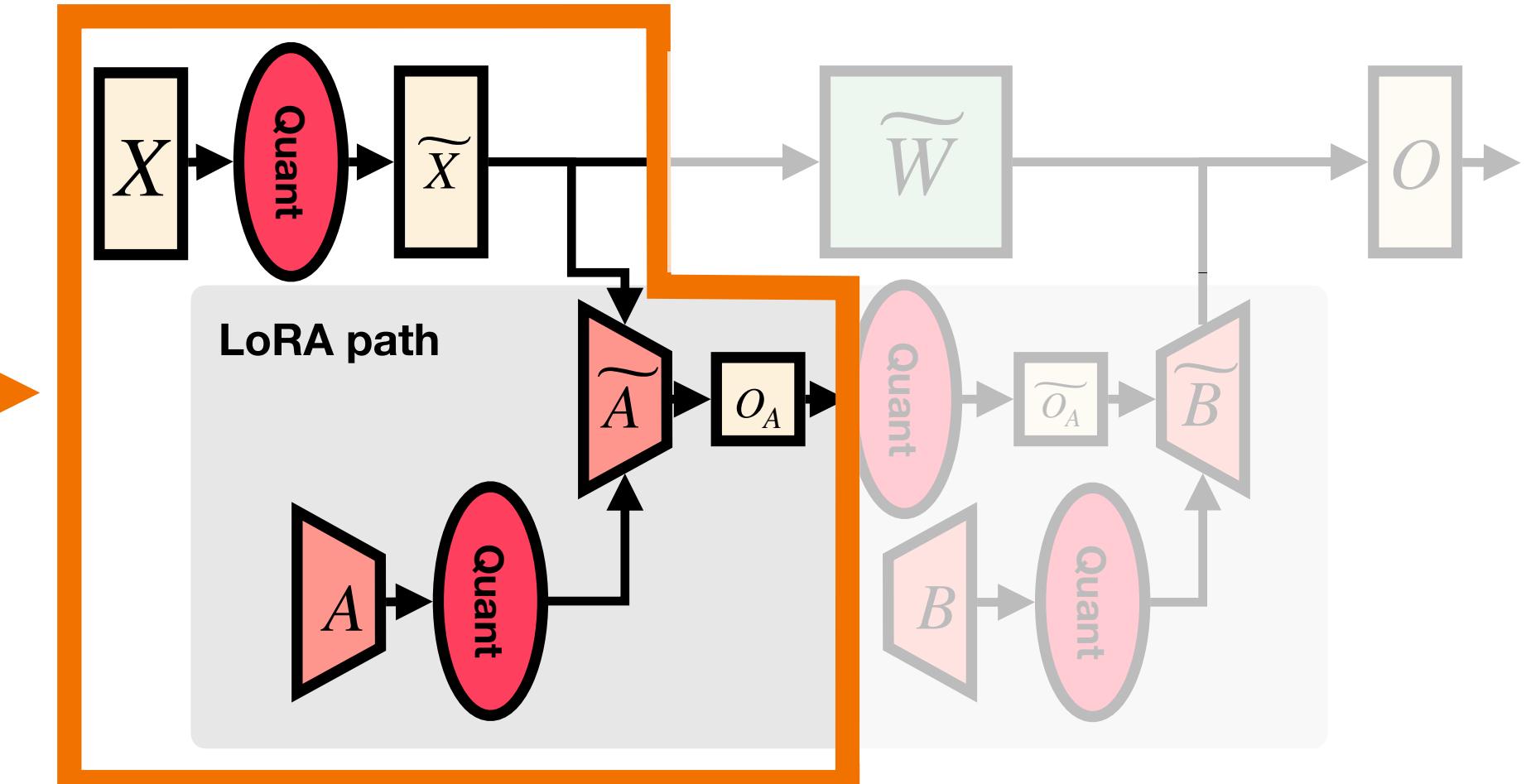
2) Efficient Gradient Computation for Melded LoRA

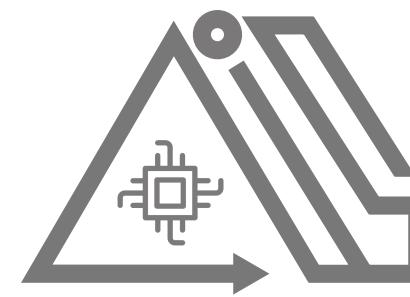
For backward:

- (1) We freeze the A matrix
- (2) Compute gradient of B matrix

$$\frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial O} x^\top A^\top = \frac{\partial \mathcal{L}}{\partial O} (Ax)^\top$$

Naive Ax computation
yields further overhead





Proposed Method

2) Efficient Gradient Computation for Melded LoRA

For backward:

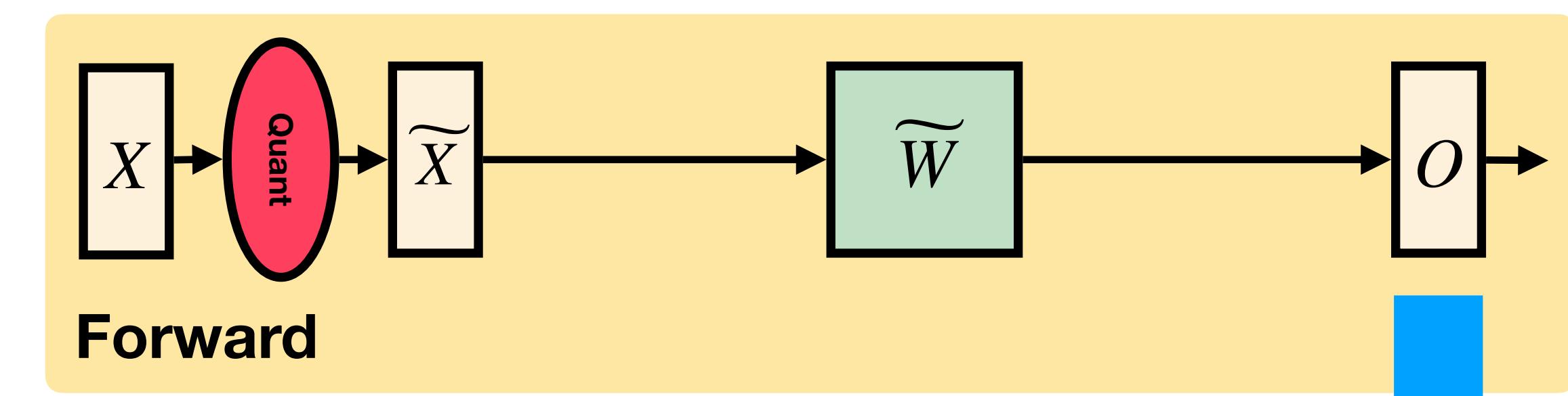
- (1) We freeze the A matrix
- (2) Compute gradient of B matrix

$$\frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial O} x^\top A^\top = \frac{\partial \mathcal{L}}{\partial O} (Ax)^\top$$

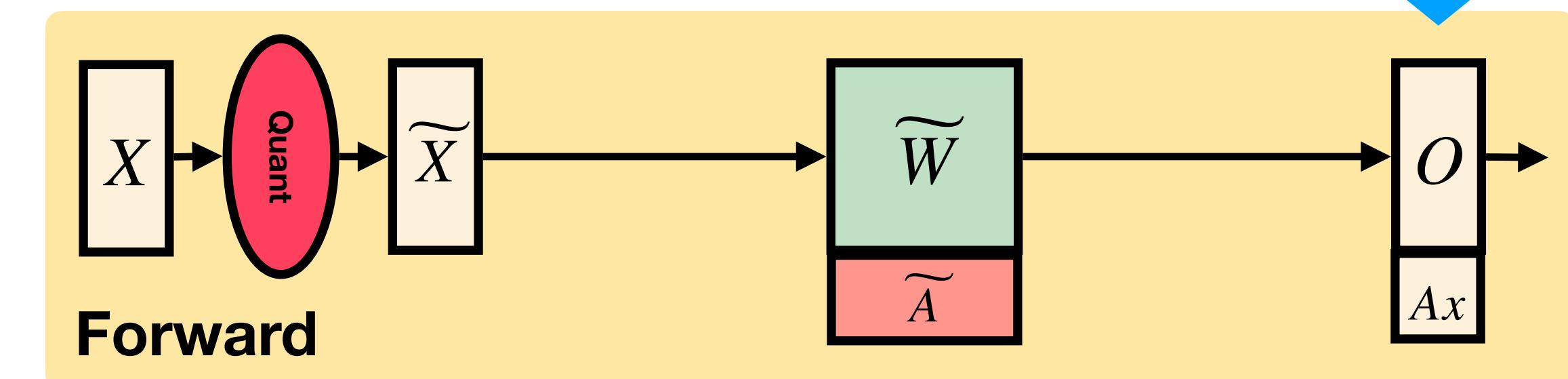
(2)-1 Merge A matrix to W:

$$\tilde{W}' = \begin{bmatrix} \tilde{W} \\ \tilde{A} \end{bmatrix} \in \mathbb{R}^{(m+r) \times n}$$

(2)-2 Precompute Ax in forward: $\tilde{W}' \tilde{x} = \begin{bmatrix} O \\ Ax \end{bmatrix} \in \mathbb{R}^{(m+r) \times d}$



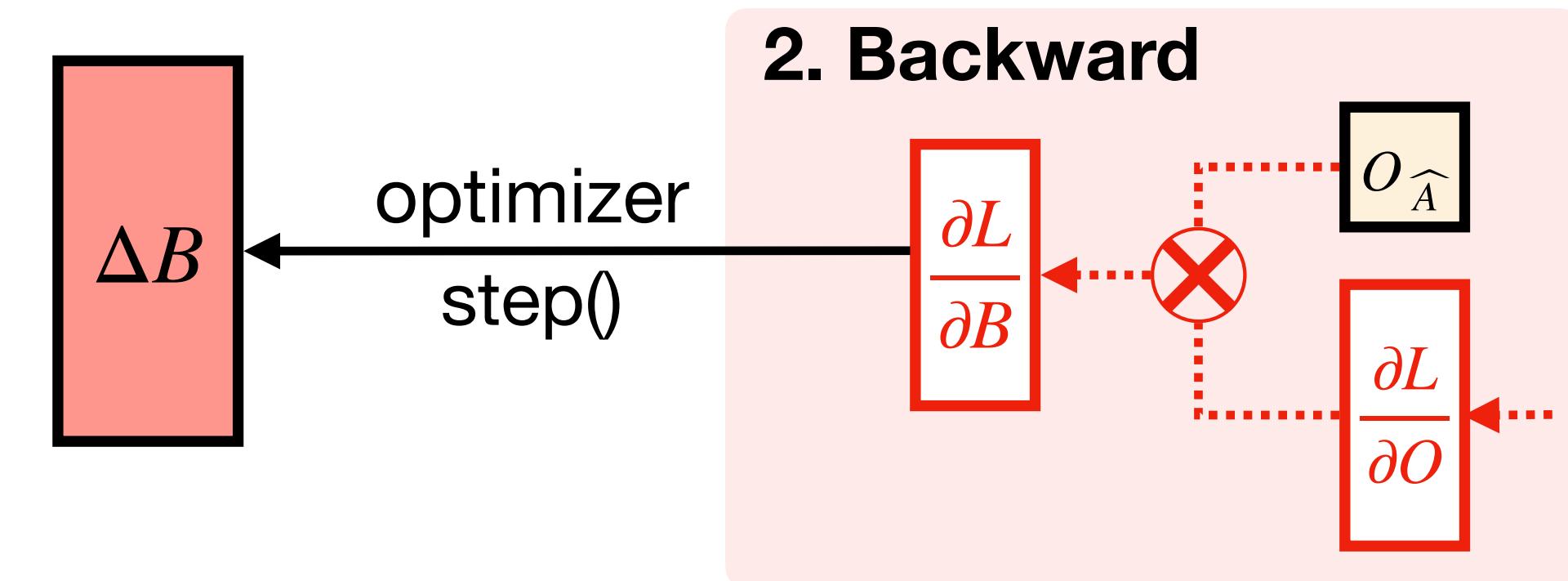
Precompute for gradient

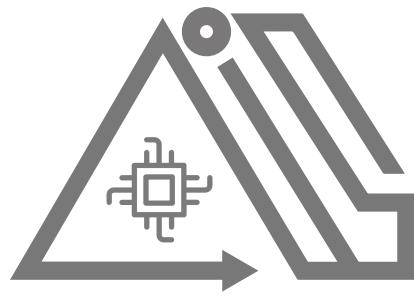


Proposed Method

3) Row-wise **Update** of Quantized Weights

- ΔB Buffer: store updates of B
 - Initialized to a zero-matrix





Proposed Method

3) Row-wise Update of Quantized Weights

- ΔB Buffer: store updates of B
 - Initialized to a zero-matrix

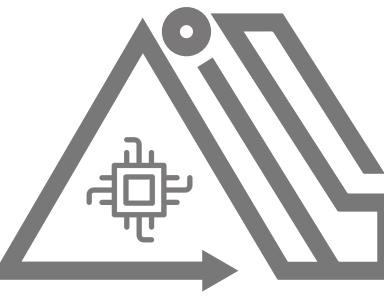
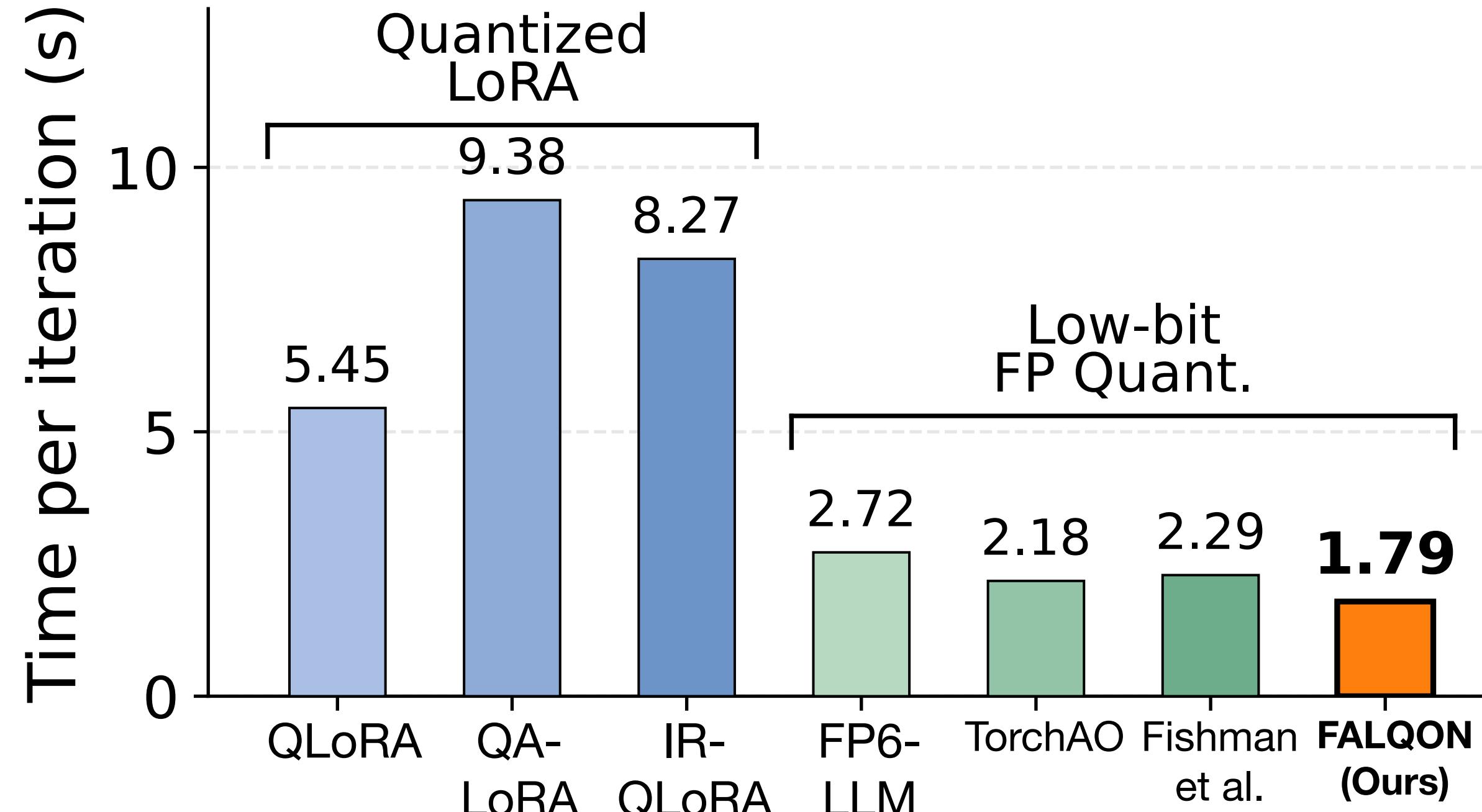


- Top-K Row-wise Update
 - Small updates cannot exceed quantization-grid
 - Apply large update rows only

$$\tilde{W} + \Delta B \times A$$

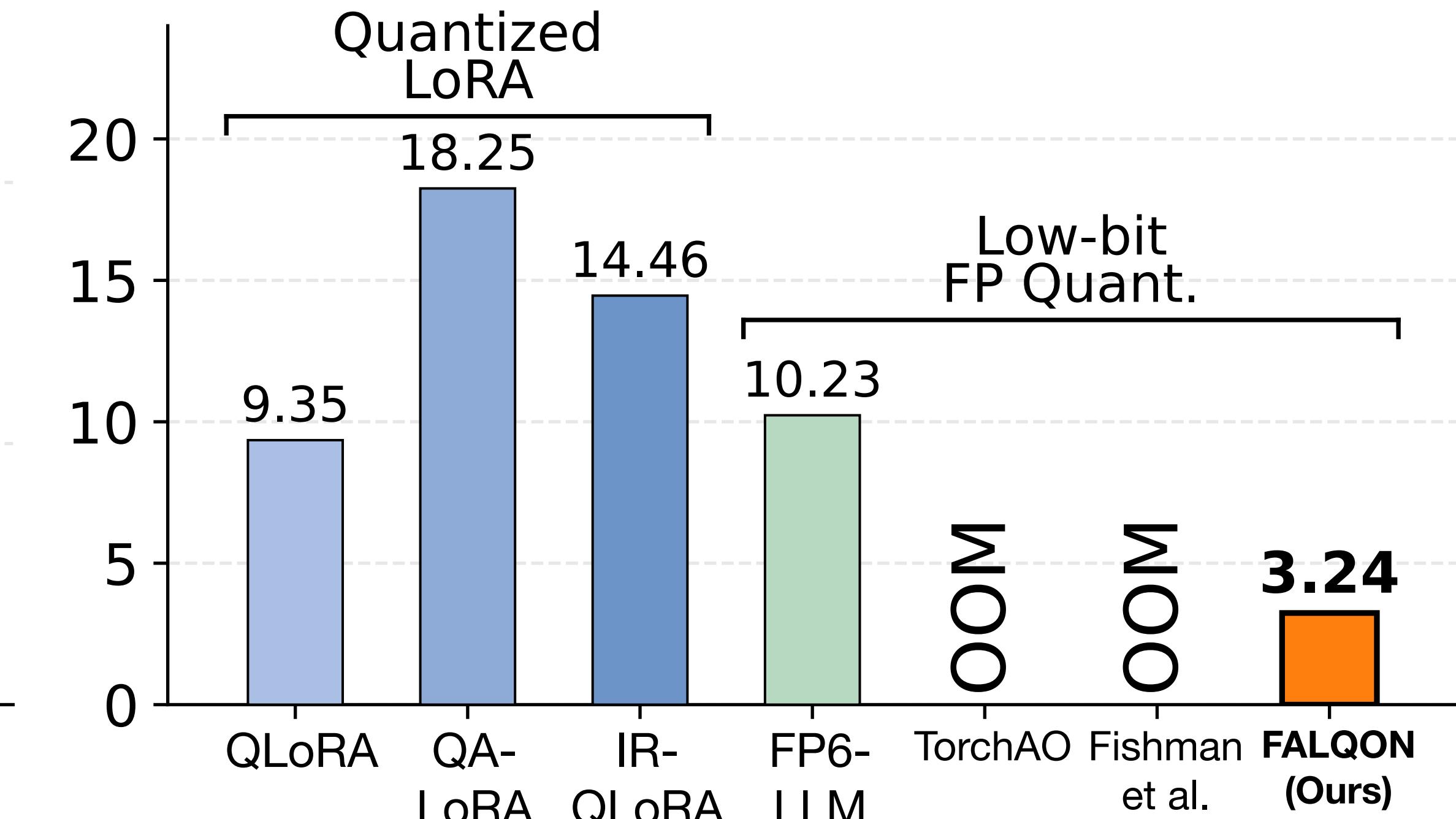
$$\tilde{W}[K] + \Delta B \times A$$

Evaluation



5-shot
MMLU 0.3272 0.3548 0.3388 0.2295 0.3393 0.3537 0.3491

LLaMA-7B



5-shot
MMLU 0.4443 0.4729 0.4349 0.2298 OOM OOM 0.4644

LLaMA-13B

Conclusion

- We show that existing FP8 quantization methods incur substantial overhead with small-dimensional LoRA adapters.
- We propose FALQON, which merges the LoRA adapter in the quantized backbone and significantly reduces quantization overhead.
- FALQON achieves up to three times speedup over existing quantized LoRA methods.

