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Backgrounds
• Low-rank adaptation (LoRA)


• Freeze pre-trained weights


• Train LoRA weights only


• Reduce memory consumption  
of gradient and optimizer state
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• FP8 quantization (conversion) requires scaling


• Calculate absolute max (amax) for scaling


• For quantization,  
we need a reduction for amax and scaling


• For small-dimensional MatMul,  
the overhead exceeds the speed up

Backgrounds
FP8 Quantization in Linear Layer
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Motivational Study
Quantization Overhead of LoRA Layers
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Motivational Study

Problem: Current FP8 framework suffer from quantization overhead on LoRA
Research Goal: Design a low-overhead FP8 framework for LoRA

FP8 Quantization Overhead of LoRA Layers

FP16 MatMul



Proposed Method
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error W̃ = Worig + ΔWQ

Quantization 
Error

W̃ = Quantize(W )
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Proposed Method
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error W̃ = Worig + ΔWQ

Quantization 
Error

Worig + ̂B ̂A ̂B ̂A ≈ ΔWQwhere,

Quantization Error  
as LoRA

W̃ = Quantize(W )

No separate LoRA path
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Proposed Method
2) Efficient Gradient Computation for Melded LoRA

For backward:

(1) We freeze the A matrix 

(2) Compute gradient of B matrix
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Proposed Method

(2)-1 Merge A matrix to W:

For backward:

(1) We freeze the A matrix 

(2) Compute gradient of B matrix
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2) Efficient Gradient Computation for Melded LoRA



• uffer: store updates of B


• Initialized to a zero-matrix

ΔB

Proposed Method
2. Backward
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3) Row-wise Update of Quantized Weights



• uffer: store updates of B


• Initialized to a zero-matrix

ΔB

Proposed Method
2. Backward
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• Top-K Row-wise Update


• Small updates cannot exceed  
quantization-grid 


• Apply large update rows only

step()

3) Row-wise Update of Quantized Weights



Evaluation
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Conclusion
• We show that existing FP8 quantization methods incur substantial overhead 

with small-dimensional LoRA adapters.


• We propose FALQON, which merges the LoRA adapter in the quantized 
backbone and significantly reduces quantization overhead.


• FALQON achieves up to three times speedup over existing quantized LoRA 
methods. 


