
FALQON: Accelerating LoRA Fine-tuning
with Low-Bit Floating-Point Arithmetic

Kanghyun Choi, Hyeyoon Lee, SunJong Park, Dain Kwon, Jinho Lee

Department of Electrical and Computer Engineering

Seoul National University

NeurIPS 2025

Backgrounds
• Low-rank adaptation (LoRA)

• Freeze pre-trained weights

• Train LoRA weights only

• Reduce memory consumption  
of gradient and optimizer state

Low-Rank Adaptation (LoRA)

Pre-trained 
weight W

BA

X

LoRA weights

OA

O

WFT = Worig + ΔW ≈ Worig + BA

weight
update

low-rank
projection

(LoRA)

• FP8 quantization (conversion) requires scaling

• Calculate absolute max (amax) for scaling

• For quantization,  
we need a reduction for amax and scaling

• For small-dimensional MatMul,  
the overhead exceeds the speed up

Backgrounds
FP8 Quantization in Linear Layer

W̃

B̃Ã OA ÕA

X̃X O

Q
uant

Q
uant

B

Q
uantA

Q
uant

LoRA path

W

BA OA

X O

LoRA path

Motivational Study
Quantization Overhead of LoRA Layers

FP16 (No Quantization) FP8 (Quantization)

Quantization overhead from LoRA path

Motivational Study
FP8 Quantization Overhead of LoRA Layers

FP16 MatMul

Motivational Study

Problem: Current FP8 framework suffer from quantization overhead on LoRA
Research Goal: Design a low-overhead FP8 framework for LoRA

FP8 Quantization Overhead of LoRA Layers

FP16 MatMul

Proposed Method
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error W̃ = Worig + ΔWQ

Quantization
Error

W̃ = Quantize(W)

Proposed Method
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error W̃ = Worig + ΔWQ

Quantization
Error

Worig + ̂B ̂A ̂B ̂A ≈ ΔWQwhere,

Quantization Error  
as LoRA

W̃ = Quantize(W)

Proposed Method
1) Melded LoRA: Merging backbone and LoRA for Forward

Quantization Error W̃ = Worig + ΔWQ

Quantization
Error

Worig + ̂B ̂A ̂B ̂A ≈ ΔWQwhere,

Quantization Error  
as LoRA

W̃ = Quantize(W)

No separate LoRA path

1. Forward

FP8 (Baseline)

W̃X̃X O

Q
uant

FP8 (Ours)
Melded LoRA

Proposed Method
2) Efficient Gradient Computation for Melded LoRA

For backward:

(1) We freeze the A matrix

(2) Compute gradient of B matrix

∂ℒ
∂B

=
∂ℒ
∂O

x⊤A⊤ =
∂ℒ
∂O

(Ax)⊤ W̃

B̃Ã OA ÕA

X̃X O
Q

uant

Q
uant

B

Q
uantA

Q
uant

LoRA path

Naive computation
yields further overhead

Ax

Proposed Method

(2)-1 Merge A matrix to W:

For backward:

(1) We freeze the A matrix

(2) Compute gradient of B matrix

∂ℒ
∂B

=
∂ℒ
∂O

x⊤A⊤ =
∂ℒ
∂O

(Ax)⊤
Forward

W̃X̃X O

Q
uant

Forward

W̃X̃X O
Q

uant

Ã Ax

Precompute for gradient

(2)-2 Precompute in forward:Ax

2) Efficient Gradient Computation for Melded LoRA

• uffer: store updates of B

• Initialized to a zero-matrix

ΔB

Proposed Method
2. Backward

∂L
∂O

O ̂A∂L
∂B

optimizer
ΔB step()

3) Row-wise Update of Quantized Weights

• uffer: store updates of B

• Initialized to a zero-matrix

ΔB

Proposed Method
2. Backward

∂L
∂O

O ̂A∂L
∂B

optimizer
ΔB

ΔB A

AΔB

W̃

W̃[K]

• Top-K Row-wise Update

• Small updates cannot exceed  
quantization-grid

• Apply large update rows only

step()

3) Row-wise Update of Quantized Weights

Evaluation

QLoRA QA-
LoRA

IR-
QLoRA

FP6-
LLM

TorchAO Fishman
et al.

FALQON
(Ours)

5-shot

MMLU 0.3272 0.3548 0.3388 0.2295 0.3393 0.3537 0.3491

QLoRA QA-
LoRA

IR-
QLoRA

FP6-
LLM

TorchAO Fishman
et al.

FALQON
(Ours)

5-shot

MMLU 0.4443 0.4729 0.4349 0.2298 OOM OOM 0.4644

LLaMA-7B LLaMA-13B

Conclusion
• We show that existing FP8 quantization methods incur substantial overhead

with small-dimensional LoRA adapters.

• We propose FALQON, which merges the LoRA adapter in the quantized
backbone and significantly reduces quantization overhead.

• FALQON achieves up to three times speedup over existing quantized LoRA
methods.

