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Abstract—We present dataflow mirroring, architectural support for
low-overhead fine-grained systolic array allocation which overcomes the
limitations of prior coarse-grained spatial-multitasking Neural Processing
Unit (NPU) architectures. The key idea of dataflow mirroring is to reverse
the dataflows of co-located Neural Networks (NNs) in horizontal and/or
vertical directions, allowing allocation boundaries to be set between any
adjacent rows and columns of a systolic array and supporting up to
four-way spatial multitasking. Our detailed experiments using MLPerf
NNs and a dataflow-mirroring-augmented NPU prototype which extends
Google’s TPU with dataflow mirroring shows that dataflow mirroring
can significantly improve the multitasking performance by up to 46.4%.

I. INTRODUCTION

As the computation load of Neural Networks (NNs) continues to
increase, Neural Processing Units (NPUs), the specialized hardware
accelerators for NNs, are being actively developed. To achieve
highly efficient NN acceleration, a number of NPUs employ a
two-dimensional array of homogeneous Processing Elements (PEs),
known as a systolic array. Systolic arrays achieve highly efficient
matrix multiplication, a key operation of NNs, by making each PE in-
dependently compute a partial result using the data from its upstream
neighbors and pass the data and/or the partial result downstream. In
this way, systolic arrays can exploit the abundant parallelism in matrix
multiplication and minimize inter-PE communication cost, making
them an attractive choice for NPUs [2], [6].

Aimed at fast single-NN executions, NPUs typically allocate all
their hardware resources to only a single NN. This allows NPUs to
minimize single-NN execution latency; however, NPUs often achieve
low hardware utilization and performance due to the insufficient
computation load of lightweight NNs and mismatches between the
NNs’ computation and systolic arrays [8], [12], [13]. A promising
solution for improving NPU hardware utilization and performance is
spatial multitasking which allocates an NPU’s hardware resources to
multiple co-located NNs [5]. First, spatial multitasking can improve
the hardware utilization by allocating the idle hardware resources
of single-NN executions to the other co-located NNs. Second, spatial
multitasking also improves the performance (e.g., system throughput,
turnaround time) as it allows the NNs to run in parallel using their
allocated hardware resources. Due to these significant advantages,
spatial multitasking is a highly desirable feature for NPUs.

To maximize the benefits of spatial multitasking, NPUs should
support fine-grained allocation of their hardware resources to co-
located NNs. Unfortunately, we observe that prior NPUs achieve sub-
optimal hardware utilization and performance as they lack support for
fine-grained systolic array allocation. Planaria [5], the state-of-the-art
spatial-multitasking NPU, partitions a systolic array into sub-arrays
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having the same height and width (e.g., a 128×128 systolic array into
four 64×64 sub-arrays) and allocates the sub-arrays to co-located
NNs. This makes Planaria support only coarse-grained systolic array
allocation as the NNs are not allowed to share the systolic array
beyond the sub-array boundary. For Planaria to support fine-grained
systolic array allocation, it needs to partition a systolic array into 1×1
sub-arrays; however, such small sub-arrays would incur large design
cost (e.g., all-to-all high-radix crossbars). To achieve highly efficient
spatial multitasking, we need a new systolic array architecture which
supports fine-grained allocation with small design cost.

In this paper, we present dataflow mirroring, architectural support
for fine-grained and low-overhead allocation of systolic arrays to co-
located NNs. Dataflow mirroring enables highly efficient fine-grained
allocation of a systolic array at the granularity of single row and
column as follows. First, dataflow mirroring prevents any interference
between the NNs by making their data flow in reverse directions from
an allocation boundary to the borders of the systolic array. Second,
to achieve the small allocation granularity with small design cost,
dataflow mirroring employs an omni-directional inter-PE network
which allows every row and column to be an allocation boundary.
Third, dataflow mirroring supports up to four-way allocation by
exploiting the rectangular shape of the systolic array which allows
up to three allocation boundaries while ensuring that the allocated
systolic array regions remain rectangular. To summarize, dataflow
mirroring satisfies all the design goals of spatial-multitasking NPUs
by achieving highly efficient fine-grained systolic array allocation.

We then design a dataflow-mirroring-augmented NPU prototype
and a software runtime to evaluate the effectiveness of dataflow
mirroring. The prototype achieves highly efficient fine-grained spatial
multitasking by extending Google’s TPU with fine-grained allocation
of the systolic array, on-chip SRAM buffers, and off-chip DRAM
bandwidth to co-located NNs. The prototype also supports dynamic
hardware resource reallocation upon NN entries and exits by exploit-
ing lightweight preemption support [3]. The software runtime auto-
matically finds the optimal systolic array allocation for the co-located
NNs using an accurate NPU performance model [3]. By exploiting
the fine-grained resource allocation and preemption capabilities of the
prototype, the software runtime dynamically reallocates the hardware
resources to maximize the hardware utilization and performance.

Our experiments using MLPerf NNs [9], [10] and detailed cycle-
level simulators [7], [11] show that dataflow mirroring can greatly
improve the NPU hardware utilization and performance. On a TPU-
like hardware configuration, dataflow mirroring improves the multi-
tasking performance by up to 46.4% over the state-of-the-art coarse-
grained spatial-multitasking NPU architecture [5]. The improvements
come from dataflow mirroring’s ability to easily adapt to diverse
loads of co-located NNs by allocating the systolic array in a fine-
grained manner, whereas the state-of-the-art achieves sub-optimal
performance due to its coarse-grained allocation granularity.

In summary, this paper makes the following contributions:
• We propose dataflow mirroring, lightweight architectural support



for fine-grained systolic array allocation. Its key idea is to reverse
the dataflows of NNs in horizontal and/or vertical direction.

• We present FGSpMt-NPU, a fine-grained spatial-multitasking NPU
architecture which extends Google’s TPU [6] with dataflow mir-
roring. Along with fine-grained hardware resource allocation,
FGSpMt-NPU supports dynamic re-allocation of the hardware
resources upon NN entries and exits with preemption support [3].

• We design a software runtime for FGSpMt-NPU which maximizes
the multitasking performance by exploiting the fine-grained systolic
array allocation and a lightweight NPU performance model [3].

II. BACKGROUND & MOTIVATION

A. Executing Neural Networks on Systolic Arrays

Given an input, a Neural Network (NN) makes a prediction by
executing a series of layers which perform different operations on
the input data. Each layer takes as input four-dimensional input
activations (iacts) whose batch size, height, width, and channel count
are n, ih, iw, ic, respectively, and produces four-dimensional output
activations (oacts) whose size is n×oh×ow×oc where oh, ow,
and oc are height, width, and channel count, respectively. Among
the layers, convolutional layers have been a primary acceleration
target of NPUs as they tend to incur the largest amounts of
computation [15]. A convolutional layer slides a filter over the
iacts, multiplies the weights of the filter with the corresponding
iacts, and accumulates the multiplication results to produce oacts.
The convolutional layer can be expressed as oact[n][oh][ow][oc] =
actFun(

∑fh−1
i=0

∑fw−1
j=0

∑ic−1
c=0 iact[n][oh + i][ow + j][c] ×

weight[i][j][c][oc]) where fh and fw are the filter height and
width, respectively, and actFun is an activation function (e.g.,
the rectified linear unit). By flattening the iacts using the image-
to-column transformation with respect to the filter and oact sizes,
the multiplication of the iacts and weights becomes the matrix
multiplication of the (n×oh×ow)-by-(fh×fw×ic) flattened iact
matrix and (fh×fw×ic)-by-oc weight matrix. For this reason,
matrix multiplication is a key operation of convolutional layers and
NPUs are typically designed to accelerate matrix multiplication [15].

For fast NN executions, NPUs typically employ a systolic array
of Processing Elements (PEs) to accelerate matrix multiplication.
How the systolic array performs matrix multiplication depends on
its dataflow which defines how the layers’ data flow on the systolic
array. Fig. 1a shows how the PEs perform matrix multiplication using
the Weight-Stationary (WS) dataflow [15]. First, the PEs get pre-
filled with their weights. The weights of one filter get distributed to
a single PE column, making different PE columns process different
output channels. Then, the iacts of the layer get streamed horizontally
across the PEs. At each cycle, each PE multiplies its weight with the
iact from the PE on the left, accumulates the multiplication result with
the partial oact (psum) received from the PE above, and streams the
updated psum to the PE below. Once a psum reaches the bottom of
the systolic array, the psum gets accumulated to the corresponding
output accumulator located below the systolic array. Fig. 1b shows a
representative systolic-array NPU architecture implementing the WS
dataflow. It consists of a systolic array, the weight buffer for feeding
the weights to the systolic array, the global buffer for storing iacts
and oacts, the systolic data setup unit for flattening the iacts, and the
off-chip DRAM. Each PE has a local buffer to store its weight.

B. Spatial Multitasking on Systolic-Array NPUs

Most NPUs today allocate all their hardware resources to only
a single NN at a time to achieve fast single-NN executions. Using
the abundant hardware resources, NPUs execute an NN’s layers in a
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Fig. 1: Working model and architecture of weight-stationary NPUs
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Fig. 2: Coarse- and fine-grained systolic array allocation

sequential manner; however, allocating all the hardware resources to
a single NN makes NPUs suffer from low hardware utilization and
performance. For example, systolic arrays using the WS dataflow
(Fig. 1a) fill their PEs with a (fh×fw×ic)-by-oc weight matrix to
perform matrix multiplication. In case the weight matrix is smaller
than the systolic array on any dimension or the matrix size is not an
exact multiple of the systolic array size, a significant portion of the
systolic array will remain idle, resulting in a significant performance
loss [8], [16]. Moreover, such under-utilization becomes more severe
as the systolic array size gets larger [11].

To overcome the low hardware utilization and performance, spatial
multitasking which allocates the hardware resources to multiple NNs
and concurrently executes the NNs is a highly desirable feature.
Recent work [5] proposes to implement spatial multitasking by
partitioning an NPU’s systolic array into sub-arrays having the same
height and width and by allocating the sub-arrays to co-located NNs.
Allocating the sub-arrays to the NNs can improve the hardware
utilization and performance; however, it lacks support for fine-grained
systolic array allocation and achieves suboptimal hardware utilization
and performance improvements. Fig. 2a illustrates the recent work’s
sub-array-based allocation of a 4×4 systolic array using 2×2 sub-
arrays. First, as the sub-array becomes the allocation granularity,
the systolic array can only be partitioned at the coarse-grained
allocation boundaries (i.e., the dotted lines Fig. 2a). More fine-grained
granularity such as single rows and columns cannot be used as they
go beyond the sub-array boundaries. Second, achieving more fine-
grained systolic array allocation using the sub-arrays incurs signifi-
cant design costs as smaller sub-arrays (e.g., 1×1 sub-arrays) require
a complex interconnection network between the sub-arrays. The
recent work employs all-to-all high-radix crossbars to interconnect
the sub-arrays; however, the design cost of the crossbars becomes
impractical for NPUs as the number of the sub-arrays increases.
Therefore, to achieve highly efficient fine-grained spatial multitasking
on NPUs, we need a new low-overhead systolic array architecture
supporting fine-grained allocation beyond the sub-array boundaries.

C. Design Goals

Motivated by the low hardware utilization and performance due to
the coarse-grained systolic array allocation, we aim to design a new
systolic array architecture supporting fine-grained systolic array allo-
cation as shown in Fig. 2b. The new systolic array architecture should
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(e) Psum-then-iact mirroring
Fig. 3: Fine-grained systolic array allocation with dataflow mirroring.
The arrows indicate the flow of iacts (blue) and psums (red).

satisfy the following design goals. First, the allocation granularity of
the systolic array should not be bound to the sub-arrays having the
same height and width. Second, the systolic array should support
a high number of co-located NNs to maximize the performance of
spatial multitasking. Third, its design cost should be small so that the
existing NPUs can easily employ the new systolic array architecture.

III. FINE-GRAINED SYSTOLIC ARRAY ALLOCATION

A. Key Idea: Reverse the Dataflows of Co-located NNs

We present dataflow mirroring, lightweight architectural support
for fine-grained systolic array allocation. The key idea of dataflow
mirroring is to reverse the dataflows of co-located NNs in hori-
zontal and/or vertical directions. Reversing the dataflows enables
fine-grained systolic array allocation and allows a two-dimensional
systolic array to co-locate up to four NNs. First, reversing the
dataflows allows every row and column of a systolic array to be an
allocation boundary, enabling fine-grained systolic array allocation.
Second, as the dataflows can be reversed twice, each in the horizontal
and vertical directions, up to three allocation boundaries can be set
and up to four NNs to be co-located on the same systolic array. In
this way, dataflow mirroring achieves all the design goals (Sec. II-C).

Dataflow mirroring supports two modes, iact mirroring and psum
mirroring, to reverse the dataflows. The iact mirroring horizontally
reverses the direction of one NN’s iacts, whereas the psum mirroring
vertically reverses the direction of one NN’s psums with respect to
a selected allocation boundary. Fig. 3 illustrates the two modes on
an example 4×4 systolic array using the WS dataflow. The baseline
WS dataflow streams the iacts in the horizontal direction from left
to right and the psums in the vertical direction from top to bottom
(Fig. 3a). When two NNs are co-located, the systolic array distributes
its PE columns or rows to the two NNs depending on the selected
mirroring mode. To distribute the PE columns to the two NNs, the
systolic array utilizes the iact mirroring (Fig. 3b). After selecting a
vertical allocation boundary, the iacts of one NN flows from left to
right, whereas the iacts of the other NN flows right-to-left. Once the
iacts reach the allocation boundary, the systolic array discards the
iacts so no interference occurs between the two NNs. Meanwhile,
the psums of the two NNs flow in the same vertical direction (i.e.,
from top to bottom) as the psum flows are not reversed. The psum
mirroring, on the other hand, reverses the psum flow of one NN
(Fig. 3c). With respect to a selected horizontal allocation boundary,
the psums of one NN flows from top to bottom and the psums of

the other NN flow toward the top. The iacts of the two NNs flow
left-to-right as usual. In this way, the systolic array can allocate its
PE rows to the two NNs.

To support a higher number of co-located NNs, dataflow mirroring
can apply the iact mirroring and psum mirroring in a hierarchical
manner. By reversing the dataflows in both the horizontal and vertical
directions using the iact mirroring and psum mirroring, respectively,
dataflow mirroring can allocate a systolic array to up to four NNs.
Fig. 3d and Fig. 3e illustrate how the two mirroring modes can be
applied at the same time. As the first step, a systolic array specifies
a global allocation boundary using either the iact mirroring or the
psum mirroring. When the global allocation boundary is specified
with the iact mirroring, the systolic array transforms into two sub-
arrays having different numbers of PE columns but the same number
of PE rows. The two sub-arrays then can specify their local allocation
boundaries using the psum mirroring. Similarly, when the psum
mirroring is used to specify the global allocation boundary, the
systolic array turns into two sub-arrays having different numbers of
PE rows but the same number of PE columns. The two sub-arrays
can further be partitioned by setting their local allocation boundaries
with the iact mirroring. Note that the same mirroring mode cannot
be applied more than once as it would incur interference between
the dataflows. By allocating each partition of the systolic array to
co-located NNs, dataflow mirroring allows up to four NNs to be co-
located on the same systolic array. Dataflow mirroring can support
three-way allocation by not specifying a local allocation boundary
for one of the two sub-arrays.

B. Advantages of Dataflow Mirroring

Dataflow mirroring achieves fine-grained systolic array allocation
by reversing the dataflows of co-located NNs using the iact mirror-
ing and psum mirroring. The fine-grained systolic array allocation
not only achieves all the design goals, but also provides several
advantages over the prior coarse-grained systolic array allocation.
First, reversing the dataflows enables allocation boundaries to be set
between any adjacent PE rows and columns, making the boundaries
not bound to fixed height and width. Second, up to four NNs can be
co-located on the same systolic array by using both the iact mirroring
and psum mirroring. Third, implementing dataflow mirroring on
the existing systolic-array NPUs requires only a modest amount
of architectural modification, allowing the NPUs to easily employ
dataflow mirroring. In summary, dataflow mirroring can serve as a
key component for achieving highly efficient spatial multitasking on
NPUs due to its fine-grained allocation capability, high number of
co-located NNs, and low implementation cost.

IV. HIGHLY EFFICIENT FINE-GRAINED SPATIAL MULTITASKING

ON SYSTOLIC-ARRAY NPUS USING DATAFLOW MIRRORING

We now design and present FGSpMt-NPU, a Fine-Grained Spatial-
Multitasking NPU architecture which implements dataflow mirroring.
We show that dataflow mirroring is easy to implement on the existing
systolic-array NPUs by proposing lightweight architectural modifica-
tions which augment Google’s TPU [6] with dataflow mirroring.

A. Architectural Extension for Dataflow Mirroring

Implementing dataflow mirroring on systolic-array NPUs intro-
duces key implementation challenges as follows. First, to reverse the
iact and psum flows of co-located NNs, the PEs of a systolic array
should be able to forward their iacts left and right, and their psums
to the upper and lower PEs. Second, the PEs should not horizontally
forward the iacts of the NNs beyond the allocated systolic array
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Fig. 4: FGSpMt-NPU architecture implementing dataflow mirroring
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(b) Concurrent execution
Fig. 5: Working model of FGSpMt-NPU for the four-way spatial
multitasking using the psum-then-iact mirroring shown in Fig. 3e

regions to prevent any interference between the NNs. Third, for
fine-grained systolic array allocation, placing an allocation boundary
between any adjacent PE rows and columns should be supported.

To solve the challenges, FGSpMt-NPU employs an omni-
directional inter-PE network and associates a lifetime counter to each
horizontal datum (e.g., iacts for the WS dataflow). Fig. 4 shows the
microarchitecture of FGSpMt-NPU which extends Google’s TPU [6]
employing the WS dataflow to support dataflow mirroring. First, the
omni-directional inter-PE network enables bi-directional horizontal
and vertical communication between the PEs. For the WS dataflow, a
PE can forward its iacts to both the left and right PEs and its psums
to both the upper and lower PEs. By enabling bi-directional inter-
PE communication, the omni-directional inter-PE network resolves
the first implementation challenge. Second, the lifetime counter
associated to a horizontal datum specifies how far the datum can
flow horizontally on the systolic array. On FGSpMt-NPU, a lifetime
counter specifies the number of PE columns the associated iact should
flow. After performing its multiply-accumulate (MAC) operation with
a received iact, each PE first decrements the lifetime counter of the
iact by one. Then, the PE examines the value of the updated lifetime
counter. If the lifetime counter is zero, the PE discards the iact as it
is no longer necessary. Otherwise, the PE forwards the iact with the
updated lifetime counter to the target adjacent PE. By controlling the
validity of each iact using the associated lifetime counter, FGSpMt-
NPU resolves the second and third key implementation challenges.

In addition, FGSpMt-NPU extends other hardware components to
feed iacts from both the left and right borders of a systolic array and
to collect psums from both the top and bottom of the systolic array.
First, to concurrently pre-fill the weights of co-located NNs, FGSpMt-
NPU adds extra wires from the Weight Buffer (WB) unit to the PEs
through not only the top-most PE row, but also the bottom-most PE
row. Second, FGSpMt-NPU extends the Systolic Data Setup (SDS)
unit of the baseline TPU architecture so that the iacts of the NNs can
be fed to the systolic array through both the left-most and the right-
most PE columns. Third, FGSpMt-NPU allows the psums which have
reached not only the bottom-most PE row, but also the top-most PE

Systolic
array

Output
accumulators

Bottom-right NN
completes its execution.

Preempt
remaining NNs

Re-allocate
hardware resources

Fig. 6: Dynamic hardware resource re-allocation on FGSpMt-NPU

row to be accumulated to their target output accumulators.
These architectural extensions allow FGSpMt-NPU to faithfully

implement dataflow mirroring on systolic-array NPUs. Fig. 5 demon-
strates how FGSpMt-NPU supports the iact mirroring and psum
mirroring at the same time by using Fig. 3e as an example scenario.
When pre-filling the weights of four co-located NNs, FGSpMt-NPU
exploits the extended wiring from the WB unit to the systolic array
to concurrently pre-fill the PEs with their weights (Fig. 5a). Then,
FGSpMt-NPU exploits the omni-directional inter-PE network and the
extended SDS unit to execute the co-located NNs in parallel (Fig. 5b).
By referring to the lifetime counters associated with the iacts, the iacts
of the co-located NNs do not interfere with each other as the iacts
get discarded by the PEs at the allocation boundaries. After that, the
psums which reach the top- and bottom-most PE rows concurrently
populate the corresponding output accumulators using the extended
wires from the systolic array to the output accumulators.

B. Fine-Grained On-Chip SRAM & Off-Chip DRAM Allocation

Performing spatial multitasking on systolic-array NPUs demands
allocation of not only a systolic array, but also the WB, Global Buffer
(GB), and off-chip DRAM bandwidth. The WB and GB store the
weights and iacts for executing an NN’s layer, respectively, and the
off-chip DRAM bandwidth determines how fast an NN can retrieve
the necessary weights and iacts from the DRAM to the WB and GB.

For simplicity, FGSpMt-NPU allocates the same amount of the
WB, GB, and off-chip DRAM bandwidth to co-located NNs. We
made this design choice as the focus of FGSpMt-NPU is on the fine-
grained allocation of systolic arrays rather than the other hardware
resources. FGSpMt-NPU allocates an equal amount of the WB and
GB to co-located NNs by distributing the SRAM banks of the WB
and GB, and an equal amount of off-chip DRAM bandwidth by
making the off-chip DRAM controller fetch the pending memory
requests of the NNs in a round-robin manner. After fetching the
pending requests, the DRAM controller utilizes its scheduler (e.g.,
FR-FCFS) to serve the requests.

C. Dynamic Hardware Resource Re-Allocation

One important feature FGSpMt-NPU should implement is dynamic
hardware resource re-allocation as co-located NNs can dynamically
change due to new NN executions and the completion of the existing
NNs. To implement the dynamic re-allocation, FGSpMt-NPU em-
ploys a lightweight preemption mechanism for systolic-array NPUs
from a recent study [3]. In particular, FGSpMt-NPU implements a
variant of DRAIN mechanism of the recent study which waits until
the currently-executing layers of the co-located NNs complete their
execution. By preempting the currently-executing layers upon an NN
entry or exit, FGSpMt-NPU can dynamically re-allocate its hardware
resources to a new set of co-located NNs in a timely manner.

Fig. 6 illustrates how FGSpMt-NPU performs dynamic re-
allocation when a co-located NN completes its execution. In this
example, FGSpMt-NPU is executing four co-located NNs using
the psum-then-iact mirroring. Then, as the NN which occupies the
bottom-right portion of the systolic array completes its execution,
FGSpMt-NPU issues a preemption command to the other co-located
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Fig. 7: FGSpMt-NPU software runtime

NNs to reclaim all the hardware resources. After that, FGSpMt-NPU
re-allocates its hardware resources to the remaining three NNs and
resumes their execution using the iact-then-psum mirroring. Likewise,
when a new NN gets co-located on FGSpMt-NPU, FGSpMt-NPU
preempts the currently-executing NNs, re-allocates its hardware re-
sources to the new set of NNs, and starts/resumes the NNs’ execution.

D. Identifying the Optimal Resource Allocation

Given a set of co-located NNs, FGSpMt-NPU should identify
the optimal hardware resource allocation to maximize its target
performance. For the purpose, FGSpMt-NPU employs a software
runtime which derives the optimal allocation using an accurate
systolic-array NPU performance model from a recent study [3]. Fig. 7
illustrates the components and working model of the FGSpMt-NPU
software runtime. The FGSpMt-NPU software runtime consists of
a topology analyzer and a resource allocator. First, the topology
analyzer generates the topology snippets of the NNs (e.g., layer count,
per-layer input and output shapes). Then, the resource allocator gen-
erates a set of allocation candidates by applying dataflow mirroring
(i.e., iact/psum/iact-then-psum/psum-then-iact mirroring). For each of
the allocation candidates, the resource allocator predicts the per-NN
execution latency using the latency prediction model and the topology
sniffets. After that, the resource allocator identifies the optimal allo-
cation which maximizes the target multitasking performance such as
the highest system throughput (STP) or the lowest average normalized
turnaround time (ANTT) [4]. The identified allocation is then sent
to FGSpMt-NPU, and FGSpMt-NPU uses the identified allocation to
concurrently execute the NNs. By exploiting the lightweight latency
prediction model, the resource allocator can quickly identify the
optimal allocation, allowing FGSpMt-NPU to easily adapt to dynamic
changes in co-located NNs in a timely manner.

V. EVALUATION

A. Experimental Setup

To examine the effectiveness of dataflow mirroring, we model
FGSpMt-NPU by extending SCALE-sim [11], a detailed cycle-
level systolic-array NPU architecture simulator. We employ Google’s
TPU [6] as the baseline NPU hardware configuration by referring to
the verified configuration from a prior study [3]. Table I summarizes
our simulation parameters and values. For accurate modeling of
off-chip DRAM access timing, we use DRAMsim3 [7] for serving
FGSpMt-NPU’s DRAM accesses (e.g., load iacts from the off-chip
DRAM to the GB). We estimate the energy consumption of FGSpMt-
NPU with Accelergy [17] for the systolic array, CACTI [1] for the
on-chip SRAM accesses, and DRAMsim3 [7] for the off-chip DRAM
accesses. Our simulation framework first collects the performance
counters required by the energy models from the timing simulation
framework. Then, we feed the collected performance counters to the
energy models, calculate the per-component energy consumption, and
derive the total energy consumption by adding up the per-component
energy consumption. The simulation framework also provides an
estimated chip area of FGSpMt-NPU. Our prototyping results using
a 22-nm cell library show that implementing FGSpMt-NPU on top
of the 128×128 TPU increases the chip area by only 14.80 mm2.

TABLE I: FGSpMt-NPU simulation parameters
Parameter Values

Clock frequency 1 GHz
Systolic array 64×64, 128×128, 256×256

Output accumulators 2048 rows/column
On-chip SRAM buffer 32 banks, 32 B/cycle, 20 MB

Off-chip DRAM HBM2, 8 channels, 256 GB/s
Computation order Filter-major [14]
Memory scheme Working sets of filter and activations [14]

TABLE II: Evaluated MLPerf NNs

Name # of Input Size PE Utilization (4 batches)
Layers (HxWxC) 64×64 128×128 256×256

AlexNet 8 227x227x3 20.0% 10.9% 5.7%
ResNet50 54 224x224x3 70.1% 45.9% 25.8%

NCF 8 1x1x138000 0.8% 0.2% 0.1%
Transformer 891 1x1x33708 2.0% 0.9% 0.3%

We model the state-of-the-art coarse-grained spatial-multitasking
NPU architecture [5] by partitioning a systolic array into four sub-
arrays having the same height and width. Then, for a given set of
co-located NNs, our model allocates an equal number of the sub-
arrays to the NNs to faithfully model the coarse-grained systolic array
allocation. For example, each NN utilizes one of the sub-arrays when
there are four co-located NNs as there are four sub-arrays. On the
other hand, FGSpMt-NPU identifies and utilizes the optimal fine-
grained systolic array allocation using dataflow mirroring.

To quantify the NPU performance, we employ two widely-used
multitasking performance metrics: STP and ANTT [4]. STP measures
the number of NN iterations completed per unit of time and is
a system-oriented higher-is-better metric. Higher STP values can
be achieved when the NNs’ progress does not get affected by
multitasking. ANTT, on the other hand, is a lower-is-better user-
oriented metric which measures the turnaround-time slowdowns due
to multitasking. Achieving the lowest-possible ANTT value (i.e., 1)
indicates that the turnaround times are not affected by multitasking.

As the multitasking benchmarks, we use four representative
MLPerf NNs [9], [10] with batch sizes of 1 and 4. Table II shows
the key characteristics of the NNs and their PE utilizations with
a batch size of 4. Using the NNs, we generate two- and four-way
multitasking benchmarks by co-locating different NNs on the same
NPU. In this way, we obtain six two-way benchmarks and one four-
way benchmarks. Then, for each benchmark, we simulate 100 million
clock cycles of the state-of-the-art and FGSpMt-NPU to ensure that
all the NNs of the benchmark complete at least one iteration.

B. High System-Perceived Performance

We first examine the STP improvements of FGSpMt-NPU over the
state-of-the-art coarse-grained NPU architecture. As FGSpMt-NPU
can support all the allocation of the state-of-the-art by implementing
dataflow mirroring which allows fine-grained systolic-array allocation
capability, FGSpMt-NPU should achieve an STP value higher than
or equal to that of the state-of-the-art for all the benchmarks.

Experimental results show that FGSpMt-NPU can improve STP by
up to 46.4% over the state-of-the-art by allowing more fine-grained
allocation of a systolic array. Fig. 8a and Fig. 8b show the STP
values of FGSpMt-NPU and the state-of-the-art for the multitasking
benchmarks with varying systolic array and batch sizes. FGSpMt-
NPU tends to achieve larger STP improvements as the systolic array
size increases; FGSpMt-NPU improves STP by 46.4% and 34.8%
over the state-of-the-art with batch sizes of 1 and 4, respectively, for
the four-way multitasking benchmark (i.e., ARNT) on a 256×256
systolic array. Our analysis reveals that, for smaller systolic arrays,
allocating an equal number of PEs tends to achieve the highest STP
values as the NNs can efficiently utilize the smaller systolic arrays
(Table II); however, larger systolic arrays make the NNs difficult to
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(a) STP with a batch size of 1
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(b) STP with a batch size of 4
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(c) ANTT with a batch size of 1
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(d) ANTT with a batch size of 4
Fig. 8: STP and ANTT of the state-of-the-art and FGSpMt-NPU with the multitasking benchmarks. Higher STP and lower ANTT are better.
A, R, N, and T represent AlexNet, ResNet50, NCF, and Transformer, respectively (e.g., AR: co-location of AlexNet and ResNet50).
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Fig. 9: Identified STP-optimal fine-grained allocation using dataflow
mirroring for the ARNT benchmark with a batch size of 1

fully utilize the PEs, favoring FGSpMt-NPU over the state-of-the-art.
Fig. 9 illustrates the optimal fine-grained systolic array allocation
which achieves the highest STP values for different systolic array
sizes. To summarize, FGSpMt-NPU greatly improves the system-
perceived performance using its fine-grained allocation capability.

Our energy model reports that FGSpMt-NPU can increase the
energy consumption by 8.9% in the geometric mean over the state-
of-the-art with a 128×128 systolic array. The increase in the energy
consumption is due to the increased performance; the more MAC
operations FGSpMt-NPU executes per unit time, the more energy it
consumes during the same amount of time (i.e., 100 million cycles).
We claim that the large STP improvements are sufficiently appealing
against the increase in the energy consumption.

C. High User-Perceived Performance

We now examine the improvements in the user-perceived per-
formance by comparing the ANTT values of FGSpMt-NPU and
the state-of-the-art (Fig. 8c and Fig. 8d). As ANTT is a lower-is-
better metric, the results indicate that FGSpMt-NPU improves the
performance by up to 17.2%. By exploiting its fine-grained systolic
array allocation capability, FGSpMt-NPU can allocate its systolic
array in a way that minimizes ANTT. FGSpMt-NPU reduces ANTT
by 17.2% and 13.4% with batch sizes of 1 and 4, respectively, over
the state-of-the-art for the four-way multitasking benchmark on a
256×256 systolic array. On the other hand, the state-of-the-art suffers
from high ANTT values as its coarse-grained systolic array allocation
cannot achieve the optimal fine-grained systolic array allocation.

VI. CONCLUSION

We proposed dataflow mirroring, lightweight architectural support
for fine-grained systolic array allocation. By reversing the dataflows
of co-located NNs, dataflow mirroring allows allocation boundaries to
be set between any adjacent PE rows and columns. Then, we designed

FGSpMt-NPU, a highly efficient spatial-multitasking NPU architec-
ture which implements dataflow mirroring to achieve higher hardware
utilization and performance over the existing coarse-grained spatial-
multitasking NPU architecture. By enabling fine-grained distribution
of the systolic array to co-located NNs, FGSpMt-NPU can greatly
improve the multitasking performance over the state-of-the-art.
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