
GradPIM: A Practical Processing-in-DRAM 
Architecture for Gradient Descent

Authors: Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee, 
Soojung Ryu, Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee

Presenter: Heesu Kim

1



What is GradPIM?

● GradPIM = Gradient descent with processing-in-memory (PIM).

● What: Accelerating gradient descent (GD) algorithm for deep neural network training.

● How: Isolating memory traffics of GD from I/O between host and memory.

2



Background - Gradient Descent (GD)

● Algorithm for training parameters (weights) of deep neural network.
● Three steps: Forward (Fwd) → Backward (Bwd) →  Weight Update (Wup).

○ Fwd: compute an error.
○ Bwd: propagate error-gradients.
○ Wup: update weights with gradients.

Figures from https://medium.com/datadriveninvestor/what-is-gradient-descent-intuitively-42f10dfb293f

Fwd Bwd Wup

3



Background – Weight update (Wup) in GD

● Wup is memory-intensive (Low Ops/byte).
○ RD/WR: multiple values, Ops: a few MAC operations.  

● Wup is appropriate target for PIM. 
○ PIM provides high bandwidth with relatively low computing power.

● Note: Wup can be processed in vectorized form (element-wise).

4

௧ାଵ ௧ ௧ ௧

momentum weight gradientnew weight



GradPIM accelerates Wup 

● GradPIM isolates memory traffics for Wup.
○ Use Internal bandwidth instead of limited external bandwidth.

5

Compute Unit

𝑣௧𝜃௧ାଵ

Memory

𝜃௧ 𝑔௧

Compute Unit

𝑣௧𝜃௧ାଵ
Memory

𝜃௧ 𝑔௧

GradPIM



Expected gain from GradPIM

● GradPIM reduces the memory traffics in “Wup”.
● Mixed-precision training increases the portion of “Wup”.

○ Here, weights in “Wup” have higher precision than the others.
● Layers with more weights have larger Wup portion.

full precision mixed precision 6



Background - DRAM Architecture

● Bank conflict: consecutive requests toward different rows in a bank.
○ Only a row can be activated at a time.

● Global I/O limits memory bandwidth.
○ Shared by all banks of a device.

○ Peak memory bandwidth < Σ bank’s internal bandwidths.

7

Bank 1

row1
row2
…
…
rowM

Bank N
Bank 2

Bank conflict

Bank

Global I/O

Sharing a global I/O among banks



Design rules for GradPIM

● (Compatibility) Compatible with DDR protocol.
○ Memory controller has a complete control over GradPIM (passive device).

○ Use the reserved command (RFU) of DDR protocol.

● (Compatibility) Non-invasive to memory cell-arrays.
○ Modifying a cell-array is too radical in view of process.

● (Performance) Utilizes local I/O while being decoupled to global I/O.

8



Naïve PIM design – Bank-level parallelism

● Place GradPIM near each bank I/O.     
○ To use internal bandwidth of each bank. 

● Put data-arrays on different rows of a bank.
○ Accessing data-arrays for weight update  Lots of bank conflicts.

9

Bank
row1
row2

…
rowM

…

PIM unit

𝜃௧
𝑣௧
𝑔௧

𝜃௧ାଵ ൌ 𝛼𝑣௧ ൅ 𝛽𝜃௧ ൅ 𝑔௧



Naïve PIM design – Bank + Array of Structure

● Change the array layout to “array of structure” format.
○ Interleaving multiple data-arrays 𝜃௧ , 𝑣௧ ,𝑔௧, to a single data-array ሺ𝜃௧, 𝑣௧ ,𝑔௧ሻ.

● No bank conflicts.
○ Accessing consecutive columns in a row.

● However, degraded bandwidth in forward and backward steps.

10

Bank
row1  

row2

…
rowM

…

ሺ𝜃௧, 𝑣௧,𝑔௧ሻ
ሺ𝜃௧, 𝑣௧,𝑔௧ሻ
ሺ𝜃௧, 𝑣௧,𝑔௧ሻ

𝜃௧ାଵ ൌ 𝛼𝑣௧ ൅ 𝛽𝜃௧ ൅ 𝑔௧

ሺ𝜃௧ , 𝑣௧ ,𝑔௧ሻ
Required data in forward.

ሺ𝜃௧ , 𝑣௧ ,𝑔௧ሻ
Required data in backward.



GradPIM – Bank-group level parallelism 1.

● Place GradPIM units near each bank-group I/O gating.
○ To use internal bandwidth of each bank-group. 
○ Note: a bank-group has four banks in DDR4.

11



GradPIM – Bank-group level parallelism 2.

● Put data-arrays on different banks within a bank-group.
○ Different banks: No bank conflict.

● Address Mapping: Bank-ID is in MSB.
○ Each value spreads over same bank-ID.

Bank (2) Row (16) B Group (2) Column (10) Bytes (3)Addr

Bank 0

Bank Group 1

Bank 1

Bank 2

Bank 3

Bank 0

Bank Group 2

Bank 1

Bank 2

Bank 3

Bank 0

Bank Group 3

Bank 1

Bank 2

Bank 3

Bank 0

Bank 1

Bank 2

Bank 3

Bank Group 0

12



GradPIM – Unit Architecture

● Components: Registers (2 for temp, 1 for quant), Scalers, and Parallel arithmetic units.
● Supported operations:

○ Scaled read: read through scaler. (Scale a value by 2௠ േ 2௡ሻ
○ Parallel operations: element-wise add/sub and quant/dequant.
○ Writeback: Store the value from registers into memory cells.

13



GradPIM – Commanding

● Use RFU (Reserved for Future Use) command of DDR4 protocol.
○ Only 5 bits are left us to control GradPIM.

● Truth table
○ Scale ID: Scaler’s hyper-param.
○ Src/Dst Position: offset in a register.
○ Src/Dst: A bit is enough to identify a register out of two registers.

14



Experiment setup – Hardware

● Neural Processing Unit (NPU): 256x256 multiplier-adder trees.
○ 128 TOPS @ 1GHz, Nangate 45nm.

● Memory: DDR4-2133 with 4 ranks (x8 8Gb DDR4-SDRAM).
● GradPIM: Layout in 32nm (scaled from 45nm) with 3-metal layers.

○ Area: Equivalent to 1Mb DRAM cells.

M
em

or
y 
Co

nt
ro
lle
r

W
r B

uf

Local BufferLocal Buffer A

Mac Array

G
lo
ba

l B
uf
fe
r

Co
l2
Im

Lo
ca
l B

uf
fe
r

Lo
ca
l B

uf
fe
r (
O
ut
)

NPU

Im2Col Local BufferLocal Buffer B

Fr
om

/T
o

D
RA

M

P2
P

Other NPUs

15



Experiment setup – Simulation & Networks

● In-house simulator with DRAMSim3*.
○ SystemC based cycle-accurate simulator.
○ Timing and energy of GradPIM are modeled in DRAMSim3.

● Target deep neural networks.
○ ResNet18 and ResNet50 – Convolutional layers.
○ MobileNet – Light-weight network for mobile devices.
○ MLP1 – Fully-connected layers. 
○ AlphaGoZero – Very deep convolutional layers for GO game.

16
*S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator,” Computer Architecture Letters, 2020. 



Experimental result – Execution time

● Baseline performs Wup in NPU.
● GradPIM.v1 achieves 2.25X speedup in Wup, thus 1.38X overall speedup.

○ “Filled” part for Wup and “grayed part” for the others (Fwd and Bwd).
○ Bigger portion of Wup  Higher overall gain.

17
Normalized execution time



Experimental result – Energy consumption

● GradPIM.v1 consumes extra energy for PIM.
● GradPIM.v1 shows less energy consumption with reduced global I/O.

18

Energy breakdown of memory



Bottleneck analysis – Command-bus utilization 

● Command-bus restricts the internal bandwidth of GradPIM.v1.
○ All GradPIM units share a single command-bus.

● GradPIM.v1 reaches 28GBps internal bandwidth.
○ Much lower than 181.28GBps maximum.

Command-bus utilization Bandwidth

19



Buffer device (BD) interface

● Use buffer devices to alleviate the command bus bottleneck.
○ Buffer devices function as fan-out expanders.

● Previous works utilizes buffer device in high-performance computing.
○ e.g., TensorDIMM*: places computing units on buffer devices.

(a) GradPIM-Direct (GradPIM.v1) (b) GradPIM-Buffered (GradPIM.v2)

* Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A practical near-memory processing architecture for embeddings and tensor operations in deep learning,” in MICRO, 2019. 20

M
em

ory Controller D
DR4 

Interface 

NPU
D
DR4 

Interface 
D
DR4 

Interface 

Buffer D
evice 

M
em

ory Controller

D
D
R4 Interface 

NPU
+ +G

ra
dP

IM
 

U
ni
t DDR4 

DIMM
G
ra
dP

IM
 

U
ni
t DDR4 

DIMM

G
ra
dP

IM
 

U
ni
t DDR4 

DIMM

G
ra
dP

IM
 

U
ni
t DDR4 

DIMM

G
ra
dP

IM
 

U
ni
t DDR4 

DIMM

G
ra
dP

IM
 

U
ni
t DDR4 

DIMM



Experimental result – Execution time (w/ BD)

● GradPIM.v2 outperforms all baselines including TD.
○ TD: TensorDIMM-like gradient descent accelerator.
○ Achieves 8.23X in Wup  1.94X overall.

21
Normalized execution time



Sensitivity – MAC size and Memory bandwidth

● Verify speedups on various “MAC size”/“Mem BW”.
○ Higher ratio  memory bottleneck  higher speedup from GradPIM.
○ Until MAC setup latency dominates execution time.

● We plot the ratio of famous NPUs and GPUs on X-axis.

22Speedups w.r.t operations/bandwidth



Sensitivity – Data precisions

● Mixed-precision: use both of high precision and low precision values.
● Bigger gap between precisions results in the higher speedups.

○ Bigger gap makes portion of Wup in execution time more dominant.
● However, even in 32/32, GradPIM still shows a substantial amount of speedup.

23Speedup w.r.t mixed-precisions



Future work – Distributed training

● Large-scale training  Distributed training
○ Workload of GD is distributed to multiple nodes.

● In data-parallelism approach, each node processes a subset of a minibatch.
○ In each node (total four nodes), forward and backward become faster.
○ But, Wup is not dependent on the batch size Wup portion becomes larger.

24

sub1 sub2 sub3 sub4

Node1 Node2 Node3 Node4

a minibatch

Excecution time of single/distributed trainingDistributed learning (data-parallelism)



Summary

● Gradient descent algorithm is suitable for PIM.
○ Memory intensive. (Low ops/byte ratio)

● GradPIM exploits bank-group level internal bandwidth of DRAM.
● GradPIM is practical.

○ Compatible with DDR protocol.
○ Non-invasive to cell array of DRAM.

● GradPIM achieves 1.94X speedup.
○ Works well for distributed training.

25


